quarta-feira, 22 de fevereiro de 2012

MATÉRIA E ENERGIA

MATÉRIA E ENERGIA
O conceito de matéria
No estudo da Ciência, a composição do Universo é dividida em duas entidades – matéria e energia. De acordo com o método cientifico, devemos realmente admitir que pode haver no Universo algo mais além da matéria e da energia, mas até agora a Ciência não encontrou este componente. A matéria inclui os materiais que formam o Universo: as rochas, a água, o ar e a multiplicidade de coisas vivas. Tudo que é sólido liquido ou gasoso é uma forma de matéria.
         Classificar algo como matéria não significa, entretanto, que conheçamos a natureza real da matéria. Sabemos que os químicos  desdobram a matéria para determinar seus constituintes, e o físico deseja saber o que mantém tais constituintes unidos; mas as partículas fundamentais e as leis da matéria parecem ser sempre um desafio.
         A melhor maneira de adquirir um conceito de matéria é trabalhar com ela e descrever suas várias formas. Uma descrição não é uma definição no sentido real da palavra, mas reduz uma idéia abstrata a termos bem concretos.
Propriedades da matéria
As propriedades são usadas para descrever a matéria. Ao descrevermos uma pessoa, por exemplo, referimo-nos às suas propriedades: sua altura, aparência, disposição, habilidades; semelhantemente, todas as espécies de matéria apresentam propriedades, e do mesmo modo que alguém pode ser identificado pela relação de suas propriedades, determinada espécie de matéria o pode ser por intermédio de suas características. Na verdade, é mais fácil discutir a matéria em termos de suas propriedades do que explicar a sua natureza final,
         As propriedades da matéria podem ser divididas em duas categorias: as que podem ser determinadas sem alteração essencial da substância, e aquelas que só se evidenciam quando a substância sofre interação com outra forma de matéria.
         A última classe de propriedades, que exigem uma mudança na composição da matéria, inclui as chamadas propriedades químicas, enquanto que as primeiras, em que não há necessidade disto, são chamadas propriedades físicas. Por  exemplo, a capacidade de uma substância de queimar-se é uma propriedade química, enquanto que o seu ponto de fusão é uma propriedade física.
         O número de propriedades que pode ser enumerado para uma substância é virtualmente infinito. Os manuais especializados de Física e Química dedicam centenas de páginas ao relacionamento das propriedades de várias formas de matéria. Da mesma maneira que existem novas facetas do caráter de uma pessoa, para as quais ela não está alertada, os cientistas constantemente estão descobrindo novas propriedades da matéria.
         Em vez de catalogar aqui as propriedades físicas da matéria com que entraremos em contato, é melhor discuti-las à medida que forem surgindo. Mas, no estudo da Física, é importante reconhecer o fato de que, se uma propriedade não pode ser medida e comparada com alguma espécie de padrão, não tem utilidade para o cientista: Sem medida não pode existir Ciência, e quanto mais precisamente se possa medir determinada propriedade, mais completa será a descrição da matéria.
Massa e peso
Uma propriedade básica da matéria é sua massa: A massa de uma substância é a medida da quantidade de matéria nela contida. As medidas de massa são baseadas no quilograma/massa, que é conservado em um depósito especial no Bureau Internacional de Pesos e Medidas, em Sèvres, próximo de Paris, na França. Em vários lugares de todo o mundo estão guardadas duplicatas deste padrão. No Brasil acham-se guardadas na Casa da Moeda, no Rio de Janeiro.
         A massa de uma substância não varia. com a temperatura; pressão ou localização no espaço. Um objeto com a massa de 1kg terá esta massa na Terra, na Lua, em Marte ou quando flutuando no espaço. Mas de que maneira determinamos a massa de uma substância? É suficiente uma comparação de tamanho com a massa padrão? Evidentemente, não, já que os objetos podem ter o mesmo volume, mas concentrações diferentes de matéria; um pode ser firmemente comprimido, como uma peça de metal, enquanto que outro pode ter estrutura esponjosa.
         Em lugar do volume, devemo-nos voltar para outra propriedade da matéria sua reação às forças. Por enquanto, podemos definir uma força como algo que tende a modificar a posição ou a direção do movimento de um objeto. Um empurrão ou um puxão é uma força, e a matéria oferece resistência a empurrões ou puxões; quando empurramos um carro parado, o empurrão é a força, e o automóvel resiste a ela. Se não apresentasse tal resistência, não seria necessário o empurrão para colocá-lo em movimento. O fato de resistir mostra que o carro é formado de matéria. A resistência da matéria a qualquer alteração de seu estado de repouso ou movimento é chamada inércia.
         A inércia se manifesta não somente quando os objetos estão parados, mas também durante seu movimento. Uma bola de futebol em vôo continuará deslocando-se, a menos que alguma coisa o impeça; quando interpomos a cabeça o em sua trajetória, estamos novamente fornecendo a força necessária para levá-la ao repouso.
         Isto sugere a existência de duas espécies de inércia - uma forma estacionária e outra de movimento, mas se trata, na verdade, da mesma propriedade da matéria que se está mostrando em circunstâncias diversas.
         A inércia da matéria é a chave para a medida da massa. Se dois objetos materiais,, inteiramente livres para se moverem; oferecem a mesma resistência a fuma dada força, então possuem a mesma massa, isto é, contêm a mesma quantidade de matéria.
         Um instrumento criado para a medida de massas por esta relação é a balança de inércia; se uma substância ou objeto é colocado na barra horizontal desta balança, e o sistema posto em vibração, o objeto mover-se-á para um lado e para o outro periodicamente, e a freqüência deste movimento dependerá da massa do objeto e da rigidez das molas. Como estas fornecem a força e a massa oferece a resistência, a balança de inércia é independente de sua localização no espaço.
         Se for conhecido o tempo de vibração de uma massa padrão, outras massas podem ser medidas determinando-se o tempo das vibrações que ocasionam. Isto pode ser feito locando-se em um gráfico as freqüências de várias massas conhecidas, e fazendo o mesmo com a freqüência da massa desconhecida, ou por meio da seguinte fórmula:
na qual m1 é uma massa conhecida (inclusive a massa da plataforma da balança), m2 a massa desconhecida (mais plataforma), T1 o tempo para uma vibração completa (ida e volta) de m1, e T2 o tempo correspondente para m2. Um bom método de determinar T1 e T2 é deixar a balança oscilar 100 vezes, e dividir o tempo total por 100.
Desta experiência podemos concluir que a massa é a medida da inércia de um objeto.
         Um termo que é muito confundido com massa é peso. Peso é uma medida da força gravitacional que atua sobre uma substância. Como esta força varia com a distância entre dois objetos, o pêlo de um corpo não é constante, e na ausência desta força será nulo, mas sua massa permanece inalterada.
         Uma unidade de força usada em Física é o newton; esta unidade não será definida de forma completa aqui, as o importante a lembrar aqui é que o newton e o quilograma não são unidades equivalentes. Com isto queremos dizer que é possível transformar quilogramas em newtons, ou vice-versa, da mesma forma que transformamos metros em centímetros. Trata-se de quantidades físicas diferentes, mas é correto dizer-se, por exemplo, que a massa de 1,0 kg 9,8 N no nível do mar.
Nas mesmas condições, os pesos de dois objetos estão na mesma razão que suas massas. Os dispositivos mais comumente usados no laboratório de Física para medir, massas e pesos são a balança de pratos e a balança de mola.
         A balança de prato compara a força gravitacional que atua sobre dois corpos por meio de alavancas, enquanto que a balança de mola mede esta força sobre um corpo, pela distorção de uma mola. Desta maneira, os dois aparelhos comparam massas indiretamente, já que as razões das massas são as mesmas que as dos pesos.
         A leitura da balança de mola variará com a altitude, e nenhum dos dois dispositivos poderá ser usado para comparar massas em um ambiente de gravidade nula. São, na verdade, "pesadores", e não "medidores de massa", já que não medem diretamente a massa de um objeto.
         Uma propriedade da matéria Intimamente relacionada com a massa é a massa específica, que se refere à quantidade de matéria em dado volume, e é definida como a massa de uma substância por unidade de volume. Assim, se um corpo ocupa um volume de 15 m3 e tem a massa de 450 kg, sua massa específica é 30 kg/m3. A fórmula matemática é d=m/v.:
         Ao se enunciar a massa específica de uma substância, é importante incluir as unidades (quilogramas por metro cúbico, gramas por centímetro cúbico, ou qualquer outra unidade de massa por unidade de volume), para que se possa compará-la com outros valores de massa específica.
Condições da matéria
Muitas propriedades da matéria não são constantes, variando com as condições do ambiente. Assim, a água congela quando está suficientemente fria, e ferve quando é aquecida o necessário. Em cada caso, as propriedades físicas da água foram alteradas. Da mesma forma, a massa especifica de um gás aumenta quando o mesmo é colocado sob pressão, e diminui quando a pressão é reduzida.
         0 ambiente da matéria é conhecido como suas condições. As condições incluem, entre outras coisas, a temperatura, pressão, concentração (no caso de soluções) e carga elétrica. Muitas das relações de causa e efeito que serão estudadas em Física, tanto na sala de aula como no laboratório, dirão respeito às variações de uma propriedade de uma substância com a mudança nas condições.
                                                                                         Adaptado de “Mecânica”  do Prof. L. P. Maia